pyhrf.jde.asl_physio module¶
-
class
pyhrf.jde.asl_physio.ASLPhysioSampler(nb_iterations=3000, obs_hist_pace=-1.0, glob_obs_hist_pace=-1, smpl_hist_pace=-1.0, burnin=0.3, callback=<pyhrf.jde.samplerbase.GSDefaultCallbackHandler object>, bold_response_levels=<pyhrf.jde.asl_physio.BOLDResponseLevelSampler object>, perf_response_levels=<pyhrf.jde.asl_physio.PerfResponseLevelSampler object>, labels=<pyhrf.jde.asl_physio.LabelSampler object>, noise_var=<pyhrf.jde.asl_physio.NoiseVarianceSampler object>, brf=<pyhrf.jde.asl_physio.PhysioBOLDResponseSampler object>, brf_var=<pyhrf.jde.asl_physio.PhysioBOLDResponseVarianceSampler object>, prf=<pyhrf.jde.asl_physio.PhysioPerfResponseSampler object>, prf_var=<pyhrf.jde.asl_physio.PhysioPerfResponseVarianceSampler object>, bold_mixt_params=<pyhrf.jde.asl_physio.BOLDMixtureSampler object>, perf_mixt_params=<pyhrf.jde.asl_physio.PerfMixtureSampler object>, drift=<pyhrf.jde.asl_physio.DriftCoeffSampler object>, drift_var=<pyhrf.jde.asl_physio.DriftVarianceSampler object>, perf_baseline=<pyhrf.jde.asl_physio.PerfBaselineSampler object>, perf_baseline_var=<pyhrf.jde.asl_physio.PerfBaselineVarianceSampler object>, check_final_value=None, output_fit=False)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSampler-
computeFit()¶
-
default_nb_its= 3000¶
-
finalizeSampling()¶
-
getGlobalOutputs()¶
-
inputClass¶ alias of
WN_BiG_ASLSamplerInput
-
parametersToShow= ['nb_its', 'response_levels', 'hrf', 'hrf_var']¶
-
-
class
pyhrf.jde.asl_physio.BOLDMixtureSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.MixtureParamsSampler,pyhrf.xmlio.Initable-
get_true_values_from_simulation_cdefs(cdefs)¶
-
-
class
pyhrf.jde.asl_physio.BOLDResponseLevelSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.ResponseLevelSampler,pyhrf.xmlio.Initable-
computeVarYTildeOpt(update_perf=False)¶ if update_perf is True then also update sumcXg and prl.ytilde update_perf should only be used at init of variable values.
-
getOutputs()¶
-
samplingWarmUp(v)¶
-
-
class
pyhrf.jde.asl_physio.DriftCoeffSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
compute_y_tilde()¶
-
getOutputs()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
samplingWarmUp(v)¶
-
updateNorm()¶
-
-
class
pyhrf.jde.asl_physio.DriftVarianceSampler(val_ini=array([ 1.]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.asl_physio.LabelSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable,pyhrf.xmlio.Initable-
CLASSES= array([0, 1])¶
-
CLASS_NAMES= ['inactiv', 'activ']¶
-
L_CA= 1¶
-
L_CI= 0¶
-
checkAndSetInitValue(variables)¶
-
compute_ext_field()¶
-
countLabels()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(v)¶
-
samplingWarmUp(v)¶
-
-
class
pyhrf.jde.asl_physio.MixtureParamsSampler(name, response_level_name, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable-
I_MEAN_CA= 0¶
-
I_VAR_CA= 1¶
-
I_VAR_CI= 2¶
-
L_CA= 1¶
-
L_CI= 0¶
-
NB_PARAMS= 3¶
-
PARAMS_NAMES= ['Mean_Activ', 'Var_Activ', 'Var_Inactiv']¶
-
checkAndSetInitValue(variables)¶
-
computeWithJeffreyPriors(j, cardCIj, cardCAj)¶
-
get_current_means()¶
-
get_current_vars()¶
-
get_true_values_from_simulation_dict()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.asl_physio.NoiseVarianceSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
compute_y_tilde()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.asl_physio.PerfBaselineSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
compute_residuals()¶
-
compute_wa(a=None)¶
-
linkToData(dataInput)¶
-
sampleNextInternal(v)¶
-
-
class
pyhrf.jde.asl_physio.PerfBaselineVarianceSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
linkToData(dataInput)¶
-
sampleNextInternal(v)¶
-
-
class
pyhrf.jde.asl_physio.PerfMixtureSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.MixtureParamsSampler,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
get_true_values_from_simulation_cdefs(cdefs)¶
-
-
class
pyhrf.jde.asl_physio.PerfResponseLevelSampler(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.ResponseLevelSampler,pyhrf.xmlio.Initable-
checkAndSetInitValue(variables)¶
-
computeVarYTildeOpt()¶
-
-
class
pyhrf.jde.asl_physio.PhysioBOLDResponseSampler(smooth_order=2, zero_constraint=True, duration=25.0, normalise=0.0, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.ResponseSampler,pyhrf.xmlio.Initable-
computeYTilde()¶ y - sum cWXg - Pl - wa
-
get_mat_X()¶
-
get_mat_XtX()¶
-
get_stackX()¶
-
sampleNextInternal(variables)¶ Sample BRF
changes to mean: changes to var:
-
samplingWarmUp(v)¶
-
-
class
pyhrf.jde.asl_physio.PhysioBOLDResponseVarianceSampler(val_ini=array([ 0.001]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.ResponseVarianceSampler,pyhrf.xmlio.Initable
-
class
pyhrf.jde.asl_physio.PhysioPerfResponseSampler(smooth_order=2, zero_constraint=True, duration=25.0, normalise=0.0, val_ini=None, do_sampling=True, use_true_value=False, diff_res=True, prior_type='physio_stochastic_regularized')¶ Bases:
pyhrf.jde.asl_physio.ResponseSampler,pyhrf.xmlio.Initable-
computeYTilde()¶ y - sum aXh - Pl - wa
-
get_mat_X()¶
-
get_mat_XtX()¶
-
get_stackX()¶
-
sampleNextInternal(variables)¶ Sample PRF with physio prior
changes to mean: add a factor of Omega h Sigma_g^-1 v_g^-1
-
samplingWarmUp(variables)¶
-
-
class
pyhrf.jde.asl_physio.PhysioPerfResponseVarianceSampler(val_ini=array([ 0.001]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl_physio.ResponseVarianceSampler,pyhrf.xmlio.Initable
-
class
pyhrf.jde.asl_physio.ResponseLevelSampler(name, response_name, mixture_name, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable-
checkAndSetInitValue(variables)¶
-
computeRR()¶
-
computeVarYTildeOpt()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
samplingWarmUp(variables)¶
-
setFinalValue()¶
-
-
class
pyhrf.jde.asl_physio.ResponseSampler(name, response_level_name, variance_name, smooth_order=2, zero_constraint=False, duration=25.0, normalise=0.0, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariableGeneric parent class to perfusion response & BOLD response samplers
-
calcXResp(resp, stackX=None)¶
-
checkAndSetInitValue(variables)¶
-
computeYTilde()¶
-
getOutputs()¶
-
get_mat_X()¶
-
get_mat_XtX()¶
-
get_rlrl()¶
-
get_stackX()¶
-
get_ybar()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
setFinalValue()¶
-
updateNorm()¶
-
updateXResp()¶
-
-
class
pyhrf.jde.asl_physio.ResponseVarianceSampler(name, response_name, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable-
checkAndSetInitValue(v)¶
-
linkToData(dataInput)¶
-
sampleNextInternal(v)¶ Sample variance of BRF or PRF
TODO: change code below –> no changes necessary so far
-
-
class
pyhrf.jde.asl_physio.WN_BiG_ASLSamplerInput(data, dt, typeLFD, paramLFD, hrfZc, hrfDuration)¶ Bases:
pyhrf.jde.models.WN_BiG_Drift_BOLDSamplerInput-
cleanPrecalculations()¶
-
makePrecalculations()¶
-
-
pyhrf.jde.asl_physio.b()¶
-
pyhrf.jde.asl_physio.compute_StS_StY(rls, v_b, mx, mxtx, ybar, rlrl, yaj, ajak_vb)¶ yaj and ajak_vb are only used to store intermediate quantities, they’re not inputs.
-
pyhrf.jde.asl_physio.compute_StS_StY_deterministic(brls, prls, v_b, mx, mxtx, mwx, mxtwx, mwxtwx, ybar, rlrl_bold, rlrl_perf, brlprl, omega, yj, ajak_vb)¶ yj, ajak_vb and cjck_vb are only used to store intermediate quantities, they’re not inputs.
-
pyhrf.jde.asl_physio.compute_bRpR(brl, prl, nbConditions, nbVoxels)¶