pyhrf.jde.drift module¶
-
class
pyhrf.jde.drift.DriftARSampler(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariableGibbs sampler of the parameters modelling the low frequency drift in the fMRI time course, in the case of AR noise
-
checkAndSetInitValue(variables)¶
-
computeVarYTilde(varNrls, varXh)¶
-
fillOutputs2(outputs, iROI=-1)¶
-
finalizeSampling()¶
-
initOutputs2(outputs, nbROI=-1)¶
-
linkToData(dataInput)¶
-
sampleNextAlt(variables)¶
-
sampleNextInternal(variables)¶
-
samplingWarmUp(variables)¶ #TODO : comment
-
updateNorm()¶
-
updateVarYmDrift()¶
-
-
class
pyhrf.jde.drift.DriftSampler(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariableGibbs sampler of the parameters modelling the low frequency drift in the fMRI time course, in the case of white noise.
-
checkAndSetInitValue(variables)¶
-
getOutputs()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
updateNorm()¶
-
-
class
pyhrf.jde.drift.DriftSamplerWithRelVar(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.jde.drift.DriftSamplerGibbs sampler of the parameters modelling the low frequency drift in the fMRI time course, in the case of white noise.
-
checkAndSetInitValue(variables)¶
-
getOutputs()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
updateNorm()¶
-
-
class
pyhrf.jde.drift.ETASampler(do_sampling=True, use_true_value=False, val_ini=array([ 1.]))¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariableGibbs sampler of the variance of the Inverse Gamma prior used to regularise the estimation of the low frequency drift embedded in the fMRI time course
-
checkAndSetInitValue(variables)¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.drift.ETASampler_MultiSess(do_sampling=True, use_true_value=False, val_ini=array([ 1.]))¶ Bases:
pyhrf.jde.drift.ETASampler-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
pyhrf.jde.drift.sampleDrift(varInvSigma_drift, ptLambdaY, dim)¶