pyhrf.jde.noise module¶
-
class
pyhrf.jde.noise.
NoiseARParamsSampler
(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSamplerVariable
-
MH_ARsampling_gauss_proposal
(sig2, M)¶
-
MH_ARsampling_optim
(A, reps, M)¶
-
P_SAMPLE_FLAG
= 'sampleFlag'¶
-
P_USE_TRUE_VALUE
= 'useTrueValue'¶
-
P_VAL_INI
= 'initialValue'¶
-
checkAndSetInitValue
(variables)¶
-
computeInvAutoCorrNoise
(ARp)¶
-
defaultParameters
= {'useTrueValue': False, 'initialValue': None, 'sampleFlag': True}¶
-
finalizeSampling
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.noise.
NoiseVarianceARSampler
(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.jde.noise.NoiseVarianceSampler
-
checkAndSetInitValue
(variables)¶
-
computeVarYTilde
(varNrls, varXh, varMBYPl)¶
-
finalizeSampling
()¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.noise.
NoiseVarianceSampler
(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSamplerVariable
#TODO : comment
-
checkAndSetInitValue
(variables)¶
-
computeMXhQXh
(h, varXQX)¶
-
compute_aaXhQXhi
(aa, i)¶
-
finalizeSampling
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
sampleNextInternal_bak
(variables)¶
-
-
class
pyhrf.jde.noise.
NoiseVarianceSamplerWithRelVar
(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.jde.noise.NoiseVarianceSampler
-
computeWW
(w, destww)¶
-
compute_aawwXhQXhi
(ww, aa, i)¶
-
finalizeSampling
()¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.noise.
NoiseVariance_Drift_Sampler
(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSamplerVariable
-
checkAndSetInitValue
(variables)¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.noise.
NoiseVariancewithHabSampler
(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.jde.noise.NoiseVarianceSampler
#TODO : Sampling procedure for noise variance parameters (white noise) #in case of habituation modeling wrt magnitude
-
finalizeSampling
()¶
-
sampleNextInternal
(variables)¶
-