pyhrf.jde.noise module¶
- 
class pyhrf.jde.noise.NoiseARParamsSampler(do_sampling=True, use_true_value=False, val_ini=None)¶
- Bases: - pyhrf.xmlio.Initable,- pyhrf.jde.samplerbase.GibbsSamplerVariable- 
MH_ARsampling_gauss_proposal(sig2, M)¶
 - 
MH_ARsampling_optim(A, reps, M)¶
 - 
P_SAMPLE_FLAG= 'sampleFlag'¶
 - 
P_USE_TRUE_VALUE= 'useTrueValue'¶
 - 
P_VAL_INI= 'initialValue'¶
 - 
checkAndSetInitValue(variables)¶
 - 
computeInvAutoCorrNoise(ARp)¶
 - 
defaultParameters= {'useTrueValue': False, 'initialValue': None, 'sampleFlag': True}¶
 - 
finalizeSampling()¶
 - 
linkToData(dataInput)¶
 - 
sampleNextInternal(variables)¶
 
- 
- 
class pyhrf.jde.noise.NoiseVarianceARSampler(do_sampling=True, use_true_value=False, val_ini=None)¶
- Bases: - pyhrf.jde.noise.NoiseVarianceSampler- 
checkAndSetInitValue(variables)¶
 - 
computeVarYTilde(varNrls, varXh, varMBYPl)¶
 - 
finalizeSampling()¶
 - 
sampleNextInternal(variables)¶
 
- 
- 
class pyhrf.jde.noise.NoiseVarianceSampler(do_sampling=True, use_true_value=False, val_ini=None)¶
- Bases: - pyhrf.xmlio.Initable,- pyhrf.jde.samplerbase.GibbsSamplerVariable- #TODO : comment - 
checkAndSetInitValue(variables)¶
 - 
computeMXhQXh(h, varXQX)¶
 - 
compute_aaXhQXhi(aa, i)¶
 - 
finalizeSampling()¶
 - 
linkToData(dataInput)¶
 - 
sampleNextInternal(variables)¶
 - 
sampleNextInternal_bak(variables)¶
 
- 
- 
class pyhrf.jde.noise.NoiseVarianceSamplerWithRelVar(do_sampling=True, use_true_value=False, val_ini=None)¶
- Bases: - pyhrf.jde.noise.NoiseVarianceSampler- 
computeWW(w, destww)¶
 - 
compute_aawwXhQXhi(ww, aa, i)¶
 - 
finalizeSampling()¶
 - 
sampleNextInternal(variables)¶
 
- 
- 
class pyhrf.jde.noise.NoiseVariance_Drift_Sampler(do_sampling=True, use_true_value=False, val_ini=None)¶
- Bases: - pyhrf.xmlio.Initable,- pyhrf.jde.samplerbase.GibbsSamplerVariable- 
checkAndSetInitValue(variables)¶
 - 
linkToData(dataInput)¶
 - 
sampleNextInternal(variables)¶
 
- 
- 
class pyhrf.jde.noise.NoiseVariancewithHabSampler(do_sampling=True, use_true_value=False, val_ini=None)¶
- Bases: - pyhrf.jde.noise.NoiseVarianceSampler- #TODO : Sampling procedure for noise variance parameters (white noise) #in case of habituation modeling wrt magnitude - 
finalizeSampling()¶
 - 
sampleNextInternal(variables)¶
 
- 
 
    
   
