pyhrf.jde.wsampler module

class pyhrf.jde.wsampler.WSampler(do_sampling=True, use_true_value=False, val_ini=None, pr_sigmoid_slope=1.0, pr_sigmoid_thresh=0.0)

Bases: pyhrf.xmlio.Initable, pyhrf.jde.samplerbase.GibbsSamplerVariable

CLASSES = array([0, 1])
CLASS_NAMES = ['inactiv', 'activ']
L_CA = 1
L_CI = 0
checkAndSetInitValue(variables)
computeProbW1(Qgj, gTQgj, rb, moyqj, t1, t2, mCAj, vCIj, vCAj, j, cardClassCAj)

ProbW1 is the probability that condition is relevant It is a vecteur on length nbcond

computeVarXhtQ(h, matXQ)
computemoyq(cardClassCA, nbVoxels)

Compute mean of labels in ROI

finalizeSampling()
getOutputs()
initObservables()
linkToData(dataInput)
sampleNextInternal(variables)
saveCurrentValue(it)
saveObservables(it)
threshold_W(meanW, thresh)
updateObsersables()
class pyhrf.jde.wsampler.W_Drift_Sampler(do_sampling=True, use_true_value=False, val_ini=None, pr_sigmoid_slope=1.0, pr_sigmoid_thresh=0.0)

Bases: pyhrf.xmlio.Initable, pyhrf.jde.samplerbase.GibbsSamplerVariable

CLASSES = array([0, 1])
CLASS_NAMES = ['inactiv', 'activ']
L_CA = 1
L_CI = 0
checkAndSetInitValue(variables)
computeProbW1(gj, gTgj, rb, t1, t2, mCAj, vCIj, vCAj, j, cardClassCAj)

ProbW1 is the probability that condition is relevant It is a vecteur on length nbcond

computemoyq(cardClassCA, nbVoxels)

Compute mean of labels in ROI

finalizeSampling()
getOutputs()
initObservables()
linkToData(dataInput)
sampleNextInternal(variables)
saveCurrentValue(it)
saveObservables(it)
threshold_W(meanW, thresh)
updateObsersables()