pyhrf.jde.wsampler module¶
-
class
pyhrf.jde.wsampler.WSampler(do_sampling=True, use_true_value=False, val_ini=None, pr_sigmoid_slope=1.0, pr_sigmoid_thresh=0.0)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariable-
CLASSES= array([0, 1])¶
-
CLASS_NAMES= ['inactiv', 'activ']¶
-
L_CA= 1¶
-
L_CI= 0¶
-
checkAndSetInitValue(variables)¶
-
computeProbW1(Qgj, gTQgj, rb, moyqj, t1, t2, mCAj, vCIj, vCAj, j, cardClassCAj)¶ ProbW1 is the probability that condition is relevant It is a vecteur on length nbcond
-
computeVarXhtQ(h, matXQ)¶
-
computemoyq(cardClassCA, nbVoxels)¶ Compute mean of labels in ROI
-
finalizeSampling()¶
-
getOutputs()¶
-
initObservables()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
saveCurrentValue(it)¶
-
saveObservables(it)¶
-
threshold_W(meanW, thresh)¶
-
updateObsersables()¶
-
-
class
pyhrf.jde.wsampler.W_Drift_Sampler(do_sampling=True, use_true_value=False, val_ini=None, pr_sigmoid_slope=1.0, pr_sigmoid_thresh=0.0)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariable-
CLASSES= array([0, 1])¶
-
CLASS_NAMES= ['inactiv', 'activ']¶
-
L_CA= 1¶
-
L_CI= 0¶
-
checkAndSetInitValue(variables)¶
-
computeProbW1(gj, gTgj, rb, t1, t2, mCAj, vCIj, vCAj, j, cardClassCAj)¶ ProbW1 is the probability that condition is relevant It is a vecteur on length nbcond
-
computemoyq(cardClassCA, nbVoxels)¶ Compute mean of labels in ROI
-
finalizeSampling()¶
-
getOutputs()¶
-
initObservables()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
saveCurrentValue(it)¶
-
saveObservables(it)¶
-
threshold_W(meanW, thresh)¶
-
updateObsersables()¶
-