pyhrf.jde.wsampler module¶
-
class
pyhrf.jde.wsampler.
WSampler
(do_sampling=True, use_true_value=False, val_ini=None, pr_sigmoid_slope=1.0, pr_sigmoid_thresh=0.0)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSamplerVariable
-
CLASSES
= array([0, 1])¶
-
CLASS_NAMES
= ['inactiv', 'activ']¶
-
L_CA
= 1¶
-
L_CI
= 0¶
-
checkAndSetInitValue
(variables)¶
-
computeProbW1
(Qgj, gTQgj, rb, moyqj, t1, t2, mCAj, vCIj, vCAj, j, cardClassCAj)¶ ProbW1 is the probability that condition is relevant It is a vecteur on length nbcond
-
computeVarXhtQ
(h, matXQ)¶
-
computemoyq
(cardClassCA, nbVoxels)¶ Compute mean of labels in ROI
-
finalizeSampling
()¶
-
getOutputs
()¶
-
initObservables
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
saveCurrentValue
(it)¶
-
saveObservables
(it)¶
-
threshold_W
(meanW, thresh)¶
-
updateObsersables
()¶
-
-
class
pyhrf.jde.wsampler.
W_Drift_Sampler
(do_sampling=True, use_true_value=False, val_ini=None, pr_sigmoid_slope=1.0, pr_sigmoid_thresh=0.0)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSamplerVariable
-
CLASSES
= array([0, 1])¶
-
CLASS_NAMES
= ['inactiv', 'activ']¶
-
L_CA
= 1¶
-
L_CI
= 0¶
-
checkAndSetInitValue
(variables)¶
-
computeProbW1
(gj, gTgj, rb, t1, t2, mCAj, vCIj, vCAj, j, cardClassCAj)¶ ProbW1 is the probability that condition is relevant It is a vecteur on length nbcond
-
computemoyq
(cardClassCA, nbVoxels)¶ Compute mean of labels in ROI
-
finalizeSampling
()¶
-
getOutputs
()¶
-
initObservables
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
saveCurrentValue
(it)¶
-
saveObservables
(it)¶
-
threshold_W
(meanW, thresh)¶
-
updateObsersables
()¶
-