pyhrf.ui.analyser_ui module¶
-
class
pyhrf.ui.analyser_ui.FMRIAnalyser(outputPrefix='', roiAverage=False, pass_error=True, gzip_outputs=False)¶ Bases:
pyhrf.xmlio.Initable-
P_OUTPUT_PREFIX= 'outputPrefix'¶
-
P_ROI_AVERAGE= 'averageRoiBold'¶
-
analyse(data, output_dir=None)¶ Launch the wrapped analyser onto the given data
Parameters: - data (-) – the input fMRI data set (there may be multi parcels)
- output_dir (-) – the path where to store parcel-specific fMRI data sets (after splitting according to the parcellation mask)
Returns: - a list of analysis results
-> (list of tuple(FmriData, None|output of analyse_roi, str)) = (list of tuple(parcel data, analysis results, analysis report))
See method analyse_roi_wrap
-
analyse_roi(roiData)¶
-
analyse_roi_wrap(roiData)¶ Wrap the analyse_roi method to catch potential exception
-
analyse_roi_wrap_bak(roiData)¶
-
clean_output_files(output_dir)¶
-
enable_draft_testing()¶
-
filter_crashed_results(results)¶
-
get_label()¶
-
joinOutputs(cuboids, roiIds, mappers)¶
-
make_outputs_multi_subjects(data_rois, irois, all_outputs, targetAxes, ext, meta_data, output_dir)¶
-
make_outputs_single_subject(data_rois, irois, all_outputs, targetAxes, ext, meta_data, output_dir)¶
-
outputResults(results, output_dir, filter='.\\A')¶ Return: a tuple (dictionary of outputs, output file names)
-
outputResults_back_compat(results, output_dir, filter='.\\A')¶
-
parametersComments= {'averageRoiBold': 'Average BOLD signals within each ROI before analysis.', 'outputPrefix': 'Tag to prefix every output name'}¶
-
parametersToShow= ['averageRoiBold', 'outputPrefix']¶
-
set_gzip_outputs(gzip_outputs)¶
-
set_pass_errors(pass_error)¶
-
split_data(fdata, output_dir=None)¶
-