pyhrf.jde.asl module¶
-
class
pyhrf.jde.asl.
ASLSampler
(nb_iterations=3000, obs_hist_pace=-1.0, glob_obs_hist_pace=-1, smpl_hist_pace=-1.0, burnin=0.3, callback=<pyhrf.jde.samplerbase.GSDefaultCallbackHandler object>, bold_response_levels=<pyhrf.jde.asl.BOLDResponseLevelSampler object>, perf_response_levels=<pyhrf.jde.asl.PerfResponseLevelSampler object>, labels=<pyhrf.jde.asl.LabelSampler object>, noise_var=<pyhrf.jde.asl.NoiseVarianceSampler object>, brf=<pyhrf.jde.asl.BOLDResponseSampler object>, brf_var=<pyhrf.jde.asl.BOLDResponseVarianceSampler object>, prf=<pyhrf.jde.asl.PerfResponseSampler object>, prf_var=<pyhrf.jde.asl.PerfResponseVarianceSampler object>, bold_mixt_params=<pyhrf.jde.asl.BOLDMixtureSampler object>, perf_mixt_params=<pyhrf.jde.asl.PerfMixtureSampler object>, drift=<pyhrf.jde.asl.DriftCoeffSampler object>, drift_var=<pyhrf.jde.asl.DriftVarianceSampler object>, perf_baseline=<pyhrf.jde.asl.PerfBaselineSampler object>, perf_baseline_var=<pyhrf.jde.asl.PerfBaselineVarianceSampler object>, check_final_value=None, output_fit=False)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSampler
-
computeFit
()¶
-
default_nb_its
= 3000¶
-
finalizeSampling
()¶
-
getGlobalOutputs
()¶
-
inputClass
¶ alias of
WN_BiG_ASLSamplerInput
-
parametersToShow
= ['nb_its', 'bold_response_levels', 'brf', 'brf_var', 'prf', 'prf_var']¶
-
-
class
pyhrf.jde.asl.
BOLDMixtureSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.MixtureParamsSampler
,pyhrf.xmlio.Initable
-
get_true_values_from_simulation_cdefs
(cdefs)¶
-
-
class
pyhrf.jde.asl.
BOLDResponseLevelSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.ResponseLevelSampler
,pyhrf.xmlio.Initable
-
computeVarYTildeOpt
(update_perf=False)¶ if update_perf is True then also update sumcXg and prl.ytilde update_perf should only be used at init of variable values.
-
getOutputs
()¶
-
samplingWarmUp
(v)¶
-
-
class
pyhrf.jde.asl.
BOLDResponseSampler
(smooth_order=2, zero_constraint=True, duration=25.0, normalise=1.0, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.ResponseSampler
,pyhrf.xmlio.Initable
-
computeYTilde
()¶ y - sum cWXg - Pl - wa
-
get_mat_X
()¶
-
get_mat_XtX
()¶
-
get_stackX
()¶
-
-
class
pyhrf.jde.asl.
BOLDResponseVarianceSampler
(val_ini=array([ 0.001]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.ResponseVarianceSampler
,pyhrf.xmlio.Initable
-
class
pyhrf.jde.asl.
DriftCoeffSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
compute_y_tilde
()¶
-
get_accuracy
(abs_error, rel_error, fv, tv, atol, rtol)¶
-
get_final_value
()¶
-
get_true_value
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
updateNorm
()¶
-
-
class
pyhrf.jde.asl.
DriftVarianceSampler
(val_ini=array([ 1.]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.asl.
LabelSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
,pyhrf.xmlio.Initable
-
CLASSES
= array([0, 1])¶
-
CLASS_NAMES
= ['inactiv', 'activ']¶
-
L_CA
= 1¶
-
L_CI
= 0¶
-
checkAndSetInitValue
(variables)¶
-
compute_ext_field
()¶
-
countLabels
()¶
-
get_MAP_labels
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(v)¶
-
samplingWarmUp
(v)¶
-
-
class
pyhrf.jde.asl.
MixtureParamsSampler
(name, response_level_name, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
-
I_MEAN_CA
= 0¶
-
I_VAR_CA
= 1¶
-
I_VAR_CI
= 2¶
-
L_CA
= 1¶
-
L_CI
= 0¶
-
NB_PARAMS
= 3¶
-
PARAMS_NAMES
= ['Mean_Activ', 'Var_Activ', 'Var_Inactiv']¶
-
checkAndSetInitValue
(variables)¶
-
computeWithJeffreyPriors
(j, cardCIj, cardCAj)¶
-
get_current_means
()¶
-
get_current_vars
()¶
-
get_true_values_from_simulation_dict
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.asl.
NoiseVarianceSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
compute_y_tilde
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.asl.
PerfBaselineSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
compute_residuals
()¶
-
compute_wa
(a=None)¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(v)¶
-
-
class
pyhrf.jde.asl.
PerfBaselineVarianceSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(v)¶
-
-
class
pyhrf.jde.asl.
PerfMixtureSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.MixtureParamsSampler
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
get_true_values_from_simulation_cdefs
(cdefs)¶
-
-
class
pyhrf.jde.asl.
PerfResponseLevelSampler
(val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.ResponseLevelSampler
,pyhrf.xmlio.Initable
-
checkAndSetInitValue
(variables)¶
-
computeVarYTildeOpt
()¶
-
-
class
pyhrf.jde.asl.
PerfResponseSampler
(smooth_order=2, zero_constraint=True, duration=25.0, normalise=1.0, val_ini=None, do_sampling=True, use_true_value=False, diff_res=True)¶ Bases:
pyhrf.jde.asl.ResponseSampler
,pyhrf.xmlio.Initable
-
computeYTilde
()¶ y - sum aXh - Pl - wa
-
get_mat_X
()¶
-
get_mat_XtX
()¶
-
get_stackX
()¶
-
-
class
pyhrf.jde.asl.
PerfResponseVarianceSampler
(val_ini=array([ 0.001]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.asl.ResponseVarianceSampler
,pyhrf.xmlio.Initable
-
class
pyhrf.jde.asl.
ResponseLevelSampler
(name, response_name, mixture_name, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
-
checkAndSetInitValue
(variables)¶
-
computeRR
()¶
-
computeVarYTildeOpt
()¶
-
getOutputs
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
samplingWarmUp
(variables)¶
-
updateObsersables
()¶
-
-
class
pyhrf.jde.asl.
ResponseSampler
(name, response_level_name, variance_name, smooth_order=2, zero_constraint=True, duration=25.0, normalise=1.0, val_ini=None, do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
Generic parent class to perfusion response & BOLD response samplers
-
calcXResp
(resp, stackX=None)¶
-
checkAndSetInitValue
(variables)¶
-
computeYTilde
()¶
-
get_mat_X
()¶
-
get_mat_XtX
()¶
-
get_rlrl
()¶
-
get_stackX
()¶
-
get_ybar
()¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
setFinalValue
()¶
-
updateNorm
()¶
-
updateXResp
()¶
-
-
class
pyhrf.jde.asl.
ResponseVarianceSampler
(name, response_name, val_ini=array([ 0.001]), do_sampling=True, use_true_value=False)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
-
checkAndSetInitValue
(v)¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(v)¶
-
-
class
pyhrf.jde.asl.
WN_BiG_ASLSamplerInput
(data, dt, typeLFD, paramLFD, hrfZc, hrfDuration)¶ Bases:
pyhrf.jde.models.WN_BiG_Drift_BOLDSamplerInput
-
cleanPrecalculations
()¶
-
makePrecalculations
()¶
-
-
pyhrf.jde.asl.
b
()¶
-
pyhrf.jde.asl.
compute_StS_StY
(rls, v_b, mx, mxtx, ybar, rlrl, yaj, ajak_vb)¶ yaj and ajak_vb are only used to store intermediate quantities, they’re not inputs.
-
pyhrf.jde.asl.
randn
(d0, d1, ..., dn)¶ Return a sample (or samples) from the “standard normal” distribution.
If positive, int_like or int-convertible arguments are provided, randn generates an array of shape
(d0, d1, ..., dn)
, filled with random floats sampled from a univariate “normal” (Gaussian) distribution of mean 0 and variance 1 (if any of theare floats, they are first converted to integers by truncation). A single float randomly sampled from the distribution is returned if no argument is provided.
This is a convenience function. If you want an interface that takes a tuple as the first argument, use numpy.random.standard_normal instead.
Parameters: d1, ..., dn (d0,) – The dimensions of the returned array, should be all positive. If no argument is given a single Python float is returned. Returns: Z – A (d0, d1, ..., dn)
-shaped array of floating-point samples from the standard normal distribution, or a single such float if no parameters were supplied.Return type: ndarray or float See also
random.standard_normal()
- Similar, but takes a tuple as its argument.
Notes
For random samples from
, use:
sigma * np.random.randn(...) + mu
Examples
>>> np.random.randn() 2.1923875335537315 #random
Two-by-four array of samples from N(3, 6.25):
>>> 2.5 * np.random.randn(2, 4) + 3 array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], #random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) #random
-
pyhrf.jde.asl.
simulate_asl
(output_dir=None, noise_scenario='high_snr', spatial_size='tiny', v_noise=None, dt=0.5, tr=2.5)¶