pyhrf.jde.nrl.trigaussian module¶
-
class
pyhrf.jde.nrl.trigaussian.GGGNRLSampler(do_sampling=True, val_ini=None, contrasts={}, do_label_sampling=True, use_true_nrls=False, use_true_labels=False, labels_ini=None, ppm_proba_threshold=0.05, ppm_value_threshold=0, ppm_value_multi_threshold=array([ 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3., 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. ]), mean_activation_threshold=4, rescale_results=False, wip_variance_computation=False)¶ Bases:
pyhrf.jde.nrl.bigaussian.NRLSampler-
CLASSES= array([0, 1, 2])¶
-
CLASS_NAMES= ['inactiv', 'activ', 'deactiv']¶
-
FALSE_NEG= 4¶
-
FALSE_POS= 3¶
-
L_CA= 1¶
-
L_CD= 2¶
-
L_CI= 0¶
-
sampleLabels(cond, variables)¶
-
-
class
pyhrf.jde.nrl.trigaussian.TriGaussMixtureParamsSampler(do_sampling=True, use_true_value=False, val_ini=None, hyper_prior_type='Jeffreys', activ_thresh=4.0, var_ci_pr_alpha=2.04, var_ci_pr_beta=0.5, var_ca_pr_alpha=2.01, var_ca_pr_beta=0.5, var_cd_pr_alpha=2.01, var_cd_pr_beta=0.5, mean_ca_pr_mean=5.0, mean_ca_pr_var=20.0, mean_cd_pr_mean=-20.0, mean_cd_pr_var=20.0)¶ Bases:
pyhrf.jde.nrl.bigaussian.BiGaussMixtureParamsSampler-
I_MEAN_CD= 3¶
-
I_VAR_CD= 4¶
-
L_CD= 2¶
-
NB_PARAMS= 5¶
-
PARAMS_NAMES= ['Mean_Activ', 'Var_Activ', 'Var_Inactiv', 'Mean_Deactiv', 'Var_Deactiv']¶
-
P_MEAN_CD_PR_MEAN= 'meanCDPrMean'¶
-
P_MEAN_CD_PR_VAR= 'meanCDPrVar'¶
-
P_VAR_CD_PR_ALPHA= 'varCDPrAlpha'¶
-
P_VAR_CD_PR_BETA= 'varCDPrBeta'¶
-
checkAndSetInitValue(variables)¶
-
computeWithJeffreyPriors(j, cardCDj)¶
-
finalizeSampling()¶
-
getCurrentMeans()¶
-
getCurrentVars()¶
-
getOutputs()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-