pyhrf.jde.nrl.bigaussian module¶
-
class
pyhrf.jde.nrl.bigaussian.BiGaussMixtureParamsSampler(do_sampling=True, use_true_value=False, val_ini=None, hyper_prior_type='Jeffreys', activ_thresh=4.0, var_ci_pr_alpha=2.04, var_ci_pr_beta=0.5, var_ca_pr_alpha=2.01, var_ca_pr_beta=0.5, mean_ca_pr_mean=5.0, mean_ca_pr_var=20.0)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariable#TODO : comment
-
I_MEAN_CA= 0¶
-
I_VAR_CA= 1¶
-
I_VAR_CI= 2¶
-
L_CA= 1¶
-
L_CI= 0¶
-
NB_PARAMS= 3¶
-
PARAMS_NAMES= ['Mean_Activ', 'Var_Activ', 'Var_Inactiv']¶
-
checkAndSetInitValue(variables)¶
-
computeWithJeffreyPriors(j, cardCIj, cardCAj)¶
-
computeWithProperPriors(j, cardCIj, cardCAj)¶
-
finalizeSampling()¶
-
getCurrentMeans()¶
-
getCurrentVars()¶
-
getOutputs()¶
-
get_string_value(v)¶
-
linkToData(dataInput)¶
-
parametersComments= {'activ_thresh': 'Threshold for the max activ mean above which the region is considered activating', 'hyper_prior_type': "Either 'proper' or 'Jeffreys'"}¶
-
parametersToShow= []¶
-
sampleNextInternal(variables)¶
-
updateObsersables()¶
-
-
class
pyhrf.jde.nrl.bigaussian.BiGaussMixtureParamsSamplerWithRelVar(do_sampling=True, use_true_value=False, val_ini=None, hyper_prior_type='Jeffreys', activ_thresh=4.0, var_ci_pr_alpha=2.04, var_ci_pr_beta=0.5, var_ca_pr_alpha=2.01, var_ca_pr_beta=0.5, mean_ca_pr_mean=5.0, mean_ca_pr_var=20.0)¶ Bases:
pyhrf.jde.nrl.bigaussian.BiGaussMixtureParamsSampler-
computeWithProperPriorsWithRelVar(nrlsj, j, cardCIj, cardCAj, wj)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.nrl.bigaussian.BiGaussMixtureParamsSamplerWithRelVar_OLD(do_sampling=True, use_true_value=False, val_ini=None, hyper_prior_type='Jeffreys', activ_thresh=4.0, var_ci_pr_alpha=2.04, var_ci_pr_beta=0.5, var_ca_pr_alpha=2.01, var_ca_pr_beta=0.5, mean_ca_pr_mean=5.0, mean_ca_pr_var=20.0)¶ Bases:
pyhrf.jde.nrl.bigaussian.BiGaussMixtureParamsSampler-
computeWithProperPriorsWithRelVar(nrlsj, j, cardCIj, cardCAj, wj)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.nrl.bigaussian.MixtureWeightsSampler(do_sampling=True, use_true_value=False, val_ini=None)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariable#TODO : comment
-
checkAndSetInitValue(variables)¶
-
getOutputs()¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.nrl.bigaussian.NRLSampler(do_sampling=True, val_ini=None, contrasts={}, do_label_sampling=True, use_true_nrls=False, use_true_labels=False, labels_ini=None, ppm_proba_threshold=0.05, ppm_value_threshold=0, ppm_value_multi_threshold=array([ 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3., 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. ]), mean_activation_threshold=4, rescale_results=False, wip_variance_computation=False)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariableClass handling the Gibbs sampling of Neural Response Levels with a prior bi-gaussian mixture model. It handles independent and spatial versions. Refs : Vincent 2010 IEEE TMI, Makni 2008 Neuroimage, Sockel 2009 ICASSP #TODO : comment attributes
-
CLASSES= array([0, 1])¶
-
CLASS_NAMES= ['inactiv', 'activ']¶
-
FALSE_NEG= 3¶
-
FALSE_POS= 2¶
-
L_CA= 1¶
-
L_CI= 0¶
-
PPMcalculus(threshold_value, apost_mean_activ, apost_var_activ, apost_mean_inactiv, apost_var_inactiv, labels_activ, labels_inactiv)¶ Function to calculate the probability that the nrl in voxel j, condition m, is superior to a given hreshold_value
-
ThresholdPPM(proba_voxel, threshold_pval)¶
-
calcFracLambdaTilde(cond, c1, c2, variables)¶
-
checkAndSetInitLabels(variables)¶
-
checkAndSetInitNRL(variables)¶
-
checkAndSetInitValue(variables)¶
-
cleanMemory()¶
-
cleanObservables()¶
-
computeAA(nrls, destaa)¶
-
computeComponentsApost(variables, j, gTQg)¶
-
computeContrasts()¶
-
computeVarXhtQ(h, varXQ)¶
-
computeVarYTildeOpt(varXh)¶
-
compute_summary_stats()¶
-
countLabels(labels, voxIdx, cardClass)¶
-
finalizeSampling()¶
-
getClassifRate()¶
-
getFinalLabels(thres=None)¶
-
getOutputs()¶
-
getRocData(dthres=0.005)¶
-
get_final_summary()¶
-
initObservables()¶
-
init_contrasts()¶
-
linkToData(dataInput)¶
-
markWrongLabels(labels)¶
-
parametersComments= {'contrasts': 'Define contrasts as arithmetic expressions.\nCondition names used in expressions must be consistent with those specified in session data above'}¶
-
parametersToShow= ['contrasts']¶
-
printState(_)¶
-
reportDetection()¶
-
sampleLabels(cond, variables)¶
-
sampleNextAlt(variables)¶
-
sampleNextInternal(variables)¶
-
sampleNrlsParallel(varXh, rb, h, varLambda, varCI, varCA, meanCA, gTQg, variables)¶
-
sampleNrlsSerial(rb, h, varCI, varCA, meanCA, gTQg, variables)¶
-
samplingWarmUp(variables)¶ #TODO : comment
-
saveCurrentValue(it)¶
-
saveObservables(it)¶
-
updateObsersables()¶
-
-
class
pyhrf.jde.nrl.bigaussian.NRLSamplerWithRelVar(do_sampling=True, val_ini=None, contrasts={}, do_label_sampling=True, use_true_nrls=False, use_true_labels=False, labels_ini=None, ppm_proba_threshold=0.05, ppm_value_threshold=0, ppm_value_multi_threshold=array([ 0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2., 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3., 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4. ]), mean_activation_threshold=4, rescale_results=False, wip_variance_computation=False)¶ Bases:
pyhrf.jde.nrl.bigaussian.NRLSampler-
calcFracLambdaTildeWithIRRelCond(cond, c1, c2, variables, nbVox, moyqvoxj, t1, t2)¶
-
calcFracLambdaTildeWithRelCond(l, nbVox, moyqvoxj, t1, t2)¶
-
computeComponentsApostWithRelVar(variables, j, gTQg, w)¶
-
computeSumWAxh(wa, varXh)¶
-
computeVarYTildeOptWithRelVar(varXh, w)¶
-
computeWA(a, w, wa)¶
-
computemoyqvox(cardClass, nbVox)¶ Compute mean of labels in ROI (without the label of voxel i)
-
createWAxh(aXh, w)¶
-
deltaWCorr0(nbVox, moyqvoxj, t1, t2)¶
-
deltaWCorr1(nbVox, moyqvoxj, t1, t2)¶
-
sampleLabelsWithRelVar(cond, variables)¶
-
sampleNextInternal(variables)¶
-
sampleNrlsParallelWithRelVar(varXh, rb, h, varLambda, varCI, varCA, meanCA, gTQg, variables, w)¶
-
sampleNrlsSerialWithRelVar(rb, h, gTQg, variables, w, t1, t2)¶
-
samplingWarmUp(variables)¶
-
subtractYtildeWithRelVar()¶
-
-
class
pyhrf.jde.nrl.bigaussian.NRL_Multi_Sess_Sampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable-
P_OUTPUT_NRL= 'writeResponsesOutput'¶
-
P_SAMPLE_FLAG= 'sampleFlag'¶
-
P_TrueNrlFilename= 'TrueNrlFilename'¶
-
P_USE_TRUE_NRLS= 'useTrueNrls'¶
-
P_VAL_INI= 'initialValue'¶
-
checkAndSetInitValue(variables)¶
-
cleanMemory()¶
-
computeAA(nrls, destaa)¶
-
computeComponentsApost(variables, m, varXh, s)¶
-
computeVarYTildeSessionOpt(varXh, s)¶
-
defaultParameters= {'writeResponsesOutput': True, 'initialValue': None, 'TrueNrlFilename': None, 'useTrueNrls': False, 'sampleFlag': True}¶
-
finalizeSampling()¶
-
getOutputs()¶
-
linkToData(dataInput)¶
-
parametersComments= {'TrueNrlFilename': 'Define the filename of simulated NRLs.\nIt is taken into account when NRLs is not sampled.'}¶
-
parametersToShow= ['writeResponsesOutput']¶
-
sampleNextAlt(variables)¶
-
sampleNextInternal(variables)¶
-
samplingWarmUp(variables)¶ #TODO : comment
-
saveCurrentValue(it)¶
-
-
class
pyhrf.jde.nrl.bigaussian.Variance_GaussianNRL_Multi_Sess(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable-
P_SAMPLE_FLAG= 'sampleFlag'¶
-
P_USE_TRUE_VALUE= 'useTrueValue'¶
-
P_VAL_INI= 'initialValue'¶
-
checkAndSetInitValue(variables)¶
-
defaultParameters= {'useTrueValue': False, 'initialValue': array([ 1.]), 'sampleFlag': False}¶
-
linkToData(dataInput)¶
-
parametersToShow= ['useTrueValue']¶
-
sampleNextInternal(variables)¶
-