pyhrf.ui.jde module¶
-
class
pyhrf.ui.jde.JDEAnalyser(outputPrefix='jde_', pass_error=True)¶ Bases:
pyhrf.ui.analyser_ui.FMRIAnalyser-
get_label()¶
-
-
class
pyhrf.ui.jde.JDEMCMCAnalyser(sampler=<pyhrf.jde.models.BOLDGibbsSampler object>, osfMax=4, dtMin=0.4, dt=0.6, driftParam=4, driftType='polynomial', outputPrefix='jde_mcmc_', randomSeed=None, pass_error=True, copy_sampler=True)¶ Bases:
pyhrf.ui.jde.JDEAnalyserClass that wraps a JDE Gibbs Sampler to launch an fMRI analysis TODO: remove parameters about dt and osf (should go in HRF Sampler class), drift (should go in Drift Sampler class)
-
P_DRIFT_LFD_PARAM= 'driftParam'¶
-
P_DRIFT_LFD_TYPE= 'driftType'¶
-
P_DT= 'dt'¶
-
P_DTMIN= 'dtMin'¶
-
P_OSFMAX= 'osfMax'¶
-
P_RANDOM_SEED= 'randomSeed'¶
-
P_SAMPLER= 'sampler'¶
-
analyse_roi(atomData)¶ Launch the JDE Gibbs Sampler on a parcel-specific data set atomData :param - atomData: parcel-specific data :type - atomData: pyhrf.core.FmriData
Returns: JDE sampler object
-
enable_draft_testing()¶
-
packSamplerInput(roiData)¶
-
parametersComments= {'driftType': 'Either "cosine" or "polynomial" or "None"', 'dtMin': 'Minimum time resolution for the oversampled estimated signal', 'dt': "If different from 0 or None:\nactual time resolution for the oversampled estimated signal (dtMin is ignored).\n Better when it's a multiple of the time of repetition", 'driftParam': 'Parameter of the drift modelling.\nIf drift is "polynomial" then this is the order of the polynom.\nIf drift is "cosine" then this is the cut-off period in second.', 'sampler': 'Set of parameters for the sampling scheme'}¶
-
parametersToShow= ['dtMin', 'dt', 'driftType', 'driftParam', 'sampler']¶
-
-
pyhrf.ui.jde.jde_analyse(data=None, nbIterations=3, hrfModel='estimated', hrfNorm=1.0, hrfTrick=False, sampleHrfVar=True, hrfVar=1e-05, keepSamples=False, samplesHistPace=1)¶
-
pyhrf.ui.jde.runEstimationBetaEstim(params)¶
-
pyhrf.ui.jde.runEstimationSupervised(params)¶