pyhrf.jde.nrl.gammagaussian module

class pyhrf.jde.nrl.gammagaussian.GamGaussMixtureParamsSampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)

Bases: pyhrf.jde.samplerbase.GibbsSamplerVariable

#TODO : comment

I_MEAN_CA = 0
I_VAR_CA = 1
I_VAR_CI = 2
NB_PARAMS = 3
PARAMS_NAMES = ['Shape_Activ', 'Scale_Activ', 'Var_Inactiv']
P_SAMPLE_FLAG = 'sampleFlag'
P_SCALE_CA_PR_ALPHA = 'scaleCAPrAlpha'
P_SCALE_CA_PR_BETA = 'scaleCAPrBeta'
P_SHAPE_CA_PR_MEAN = 'shapeCAPrMean'
P_VAL_INI = 'initialValue'
P_VAR_CI_PR_ALPHA = 'varCIPrAlpha'
P_VAR_CI_PR_BETA = 'varCIPrBeta'
checkAndSetInitValue(variables)
defaultParameters = {'initialValue': None, 'varCIPrBeta': 0.5, 'sampleFlag': 1, 'scaleCAPrAlpha': 2.5, 'varCIPrAlpha': 2.5, 'scaleCAPrBeta': 1.5, 'shapeCAPrMean': 10.0}
linkToData(dataInput)
sampleNextInternal(variables)
class pyhrf.jde.nrl.gammagaussian.InhomogeneousNRLSampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)

Bases: pyhrf.xmlio.Initable, pyhrf.jde.samplerbase.GibbsSamplerVariable

Class handling the Gibbs sampling of Neural Response Levels according to Salima Makni’s algorithm (IEEE SP 2005). Inherits the abstract class C{GibbsSamplerVariable}. #TODO : comment attributes

L_CA = 1
L_CI = 0
P_BETA = 'beta'
P_LABELS_COLORS = 'labelsColors'
P_LABELS_INI = 'labelsIni'
P_SAMPLE_FLAG = 'sampleFlag'
P_SAMPLE_LABELS = 'sampleLabels'
P_TRUE_LABELS = 'trueLabels'
P_VAL_INI = 'initialValue'
calcEnergy(voxIdx, label, cond)
checkAndSetInitValue(variables)
computeMean()
computeMeanClassApost(j, nrls, varXhj, rb)
computeVarYTilde(varXh)
computeVariablesApost(varCI, shapeCA, scaleCA, rb, varXh, varLambda)
countLabels()
defaultParameters = {'initialValue': None, 'sampleLabels': 1, 'labelsColors': array([ 0., 0.]), 'labelsIni': None, 'sampleFlag': 1, 'beta': 0.4}
finalizeSampling()
linkToData(dataInput)
sampleLabels(cond, varCI, varCA, meanCA)
sampleNextAlt(variables)
sampleNextInternal(variables)
samplingWarmUp(variables)

#TODO : comment