pyhrf.jde.nrl.gammagaussian module¶
-
class
pyhrf.jde.nrl.gammagaussian.
GamGaussMixtureParamsSampler
(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable
#TODO : comment
-
I_MEAN_CA
= 0¶
-
I_VAR_CA
= 1¶
-
I_VAR_CI
= 2¶
-
NB_PARAMS
= 3¶
-
PARAMS_NAMES
= ['Shape_Activ', 'Scale_Activ', 'Var_Inactiv']¶
-
P_SAMPLE_FLAG
= 'sampleFlag'¶
-
P_SCALE_CA_PR_ALPHA
= 'scaleCAPrAlpha'¶
-
P_SCALE_CA_PR_BETA
= 'scaleCAPrBeta'¶
-
P_SHAPE_CA_PR_MEAN
= 'shapeCAPrMean'¶
-
P_VAL_INI
= 'initialValue'¶
-
P_VAR_CI_PR_ALPHA
= 'varCIPrAlpha'¶
-
P_VAR_CI_PR_BETA
= 'varCIPrBeta'¶
-
checkAndSetInitValue
(variables)¶
-
defaultParameters
= {'initialValue': None, 'varCIPrBeta': 0.5, 'sampleFlag': 1, 'scaleCAPrAlpha': 2.5, 'varCIPrAlpha': 2.5, 'scaleCAPrBeta': 1.5, 'shapeCAPrMean': 10.0}¶
-
linkToData
(dataInput)¶
-
sampleNextInternal
(variables)¶
-
-
class
pyhrf.jde.nrl.gammagaussian.
InhomogeneousNRLSampler
(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶ Bases:
pyhrf.xmlio.Initable
,pyhrf.jde.samplerbase.GibbsSamplerVariable
Class handling the Gibbs sampling of Neural Response Levels according to Salima Makni’s algorithm (IEEE SP 2005). Inherits the abstract class C{GibbsSamplerVariable}. #TODO : comment attributes
-
L_CA
= 1¶
-
L_CI
= 0¶
-
P_BETA
= 'beta'¶
-
P_LABELS_COLORS
= 'labelsColors'¶
-
P_LABELS_INI
= 'labelsIni'¶
-
P_SAMPLE_FLAG
= 'sampleFlag'¶
-
P_SAMPLE_LABELS
= 'sampleLabels'¶
-
P_TRUE_LABELS
= 'trueLabels'¶
-
P_VAL_INI
= 'initialValue'¶
-
calcEnergy
(voxIdx, label, cond)¶
-
checkAndSetInitValue
(variables)¶
-
computeMean
()¶
-
computeMeanClassApost
(j, nrls, varXhj, rb)¶
-
computeVarYTilde
(varXh)¶
-
computeVariablesApost
(varCI, shapeCA, scaleCA, rb, varXh, varLambda)¶
-
countLabels
()¶
-
defaultParameters
= {'initialValue': None, 'sampleLabels': 1, 'labelsColors': array([ 0., 0.]), 'labelsIni': None, 'sampleFlag': 1, 'beta': 0.4}¶
-
finalizeSampling
()¶
-
linkToData
(dataInput)¶
-
sampleLabels
(cond, varCI, varCA, meanCA)¶
-
sampleNextAlt
(variables)¶
-
sampleNextInternal
(variables)¶
-
samplingWarmUp
(variables)¶ #TODO : comment
-