pyhrf.jde.nrl.gammagaussian module¶
-
class
pyhrf.jde.nrl.gammagaussian.GamGaussMixtureParamsSampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶ Bases:
pyhrf.jde.samplerbase.GibbsSamplerVariable#TODO : comment
-
I_MEAN_CA= 0¶
-
I_VAR_CA= 1¶
-
I_VAR_CI= 2¶
-
NB_PARAMS= 3¶
-
PARAMS_NAMES= ['Shape_Activ', 'Scale_Activ', 'Var_Inactiv']¶
-
P_SAMPLE_FLAG= 'sampleFlag'¶
-
P_SCALE_CA_PR_ALPHA= 'scaleCAPrAlpha'¶
-
P_SCALE_CA_PR_BETA= 'scaleCAPrBeta'¶
-
P_SHAPE_CA_PR_MEAN= 'shapeCAPrMean'¶
-
P_VAL_INI= 'initialValue'¶
-
P_VAR_CI_PR_ALPHA= 'varCIPrAlpha'¶
-
P_VAR_CI_PR_BETA= 'varCIPrBeta'¶
-
checkAndSetInitValue(variables)¶
-
defaultParameters= {'initialValue': None, 'varCIPrBeta': 0.5, 'sampleFlag': 1, 'scaleCAPrAlpha': 2.5, 'varCIPrAlpha': 2.5, 'scaleCAPrBeta': 1.5, 'shapeCAPrMean': 10.0}¶
-
linkToData(dataInput)¶
-
sampleNextInternal(variables)¶
-
-
class
pyhrf.jde.nrl.gammagaussian.InhomogeneousNRLSampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶ Bases:
pyhrf.xmlio.Initable,pyhrf.jde.samplerbase.GibbsSamplerVariableClass handling the Gibbs sampling of Neural Response Levels according to Salima Makni’s algorithm (IEEE SP 2005). Inherits the abstract class C{GibbsSamplerVariable}. #TODO : comment attributes
-
L_CA= 1¶
-
L_CI= 0¶
-
P_BETA= 'beta'¶
-
P_LABELS_COLORS= 'labelsColors'¶
-
P_LABELS_INI= 'labelsIni'¶
-
P_SAMPLE_FLAG= 'sampleFlag'¶
-
P_SAMPLE_LABELS= 'sampleLabels'¶
-
P_TRUE_LABELS= 'trueLabels'¶
-
P_VAL_INI= 'initialValue'¶
-
calcEnergy(voxIdx, label, cond)¶
-
checkAndSetInitValue(variables)¶
-
computeMean()¶
-
computeMeanClassApost(j, nrls, varXhj, rb)¶
-
computeVarYTilde(varXh)¶
-
computeVariablesApost(varCI, shapeCA, scaleCA, rb, varXh, varLambda)¶
-
countLabels()¶
-
defaultParameters= {'initialValue': None, 'sampleLabels': 1, 'labelsColors': array([ 0., 0.]), 'labelsIni': None, 'sampleFlag': 1, 'beta': 0.4}¶
-
finalizeSampling()¶
-
linkToData(dataInput)¶
-
sampleLabels(cond, varCI, varCA, meanCA)¶
-
sampleNextAlt(variables)¶
-
sampleNextInternal(variables)¶
-
samplingWarmUp(variables)¶ #TODO : comment
-