pyhrf.jde.nrl.gammagaussian module¶
- 
class pyhrf.jde.nrl.gammagaussian.GamGaussMixtureParamsSampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶
- Bases: - pyhrf.jde.samplerbase.GibbsSamplerVariable- #TODO : comment - 
I_MEAN_CA= 0¶
 - 
I_VAR_CA= 1¶
 - 
I_VAR_CI= 2¶
 - 
NB_PARAMS= 3¶
 - 
PARAMS_NAMES= ['Shape_Activ', 'Scale_Activ', 'Var_Inactiv']¶
 - 
P_SAMPLE_FLAG= 'sampleFlag'¶
 - 
P_SCALE_CA_PR_ALPHA= 'scaleCAPrAlpha'¶
 - 
P_SCALE_CA_PR_BETA= 'scaleCAPrBeta'¶
 - 
P_SHAPE_CA_PR_MEAN= 'shapeCAPrMean'¶
 - 
P_VAL_INI= 'initialValue'¶
 - 
P_VAR_CI_PR_ALPHA= 'varCIPrAlpha'¶
 - 
P_VAR_CI_PR_BETA= 'varCIPrBeta'¶
 - 
checkAndSetInitValue(variables)¶
 - 
defaultParameters= {'initialValue': None, 'varCIPrBeta': 0.5, 'sampleFlag': 1, 'scaleCAPrAlpha': 2.5, 'varCIPrAlpha': 2.5, 'scaleCAPrBeta': 1.5, 'shapeCAPrMean': 10.0}¶
 - 
linkToData(dataInput)¶
 - 
sampleNextInternal(variables)¶
 
- 
- 
class pyhrf.jde.nrl.gammagaussian.InhomogeneousNRLSampler(parameters=None, xmlHandler=None, xmlLabel=None, xmlComment=None)¶
- Bases: - pyhrf.xmlio.Initable,- pyhrf.jde.samplerbase.GibbsSamplerVariable- Class handling the Gibbs sampling of Neural Response Levels according to Salima Makni’s algorithm (IEEE SP 2005). Inherits the abstract class C{GibbsSamplerVariable}. #TODO : comment attributes - 
L_CA= 1¶
 - 
L_CI= 0¶
 - 
P_BETA= 'beta'¶
 - 
P_LABELS_COLORS= 'labelsColors'¶
 - 
P_LABELS_INI= 'labelsIni'¶
 - 
P_SAMPLE_FLAG= 'sampleFlag'¶
 - 
P_SAMPLE_LABELS= 'sampleLabels'¶
 - 
P_TRUE_LABELS= 'trueLabels'¶
 - 
P_VAL_INI= 'initialValue'¶
 - 
calcEnergy(voxIdx, label, cond)¶
 - 
checkAndSetInitValue(variables)¶
 - 
computeMean()¶
 - 
computeMeanClassApost(j, nrls, varXhj, rb)¶
 - 
computeVarYTilde(varXh)¶
 - 
computeVariablesApost(varCI, shapeCA, scaleCA, rb, varXh, varLambda)¶
 - 
countLabels()¶
 - 
defaultParameters= {'initialValue': None, 'sampleLabels': 1, 'labelsColors': array([ 0., 0.]), 'labelsIni': None, 'sampleFlag': 1, 'beta': 0.4}¶
 - 
finalizeSampling()¶
 - 
linkToData(dataInput)¶
 - 
sampleLabels(cond, varCI, varCA, meanCA)¶
 - 
sampleNextAlt(variables)¶
 - 
sampleNextInternal(variables)¶
 - 
samplingWarmUp(variables)¶
- #TODO : comment 
 
- 
 
    
   
