pyhrf.jde.nrl.habituation module

pyhrf.jde.nrl.habituation.LaplacianPdf(beta, r0Hab, a, b, N=1)
class pyhrf.jde.nrl.habituation.NRLwithHabSampler

Bases: pyhrf.jde.nrl.bigaussian.NRLSampler

Class handling the Gibbs sampling of Neural Response Levels in combination with habituation speed factor sampling. The underlying model is exponential decaying #TODO : comment attributes

P_HABITS_INI = 'habitIni'
P_HAB_ALGO_PARAM = 'paramLexp'
P_OUTPUT_RATIO = 'outputRatio'
P_SAMPLE_HABITS = 'sampleHabit'
P_TRUE_HABITS = 'trueHabits'
checkAndSetInitHabit(variables)
checkAndSetInitValue(variables)
cleanMemory()
cleanObservables()
computeComponentsApost(variables, j, XhtQXh)
computeVarXhtQ(Q)
computeVarYTildeHab(varXh)
computeVarYTildeHabOld(varXh)
finalizeSampling()
getOutputs()
habitCondSampler(j, rb, varHRF)
habitCondSamplerParallel(rb, h)
habitCondSamplerSerial(rb, h)
initObservables()
linkToData(dataInput)
parametersComments = {'contrasts': 'Define contrasts as arithmetic expressions.\nCondition names used in expressions must be consistent with those specified in session data above', 'paramLexp': 'lambda-like parameter of the Laplacian distribution in habit sampling\n recommended between 1. and 10.'}
sampleNextAlt(variables)
sampleNextInternal(variables)
sampleNrlsParallel(rb, h, varLambda, varCI, varCA, meanCA, varXhtQXh, variables)
sampleNrlsSerial(varXh, rb, h, varCI, varCA, meanCA, variables)
sampleNrlsSerial_bak(rb, h, varLambda, varCI, varCA, meanCA, varXhtQXh, variables)
samplingWarmUp(variables)
saveCurrentValue()
setupGamma()
setupTimeNrls()
spExtract(spInd, mtrx, cond)
updateGammaTimeNRLs(nc, nv)
updateObsersables()
updateXh(varHRF)
updateYtilde()
pyhrf.jde.nrl.habituation.sparsedot(X, A, mask, taille)
pyhrf.jde.nrl.habituation.sparsedotdimun(X, A, mask, lenght)
pyhrf.jde.nrl.habituation.subcptGamma(nrl, habit, nbTrials, deltaOns)