pyhrf.jde.nrl.habituation module¶
-
pyhrf.jde.nrl.habituation.LaplacianPdf(beta, r0Hab, a, b, N=1)¶
-
class
pyhrf.jde.nrl.habituation.NRLwithHabSampler¶ Bases:
pyhrf.jde.nrl.bigaussian.NRLSamplerClass handling the Gibbs sampling of Neural Response Levels in combination with habituation speed factor sampling. The underlying model is exponential decaying #TODO : comment attributes
-
P_HABITS_INI= 'habitIni'¶
-
P_HAB_ALGO_PARAM= 'paramLexp'¶
-
P_OUTPUT_RATIO= 'outputRatio'¶
-
P_SAMPLE_HABITS= 'sampleHabit'¶
-
P_TRUE_HABITS= 'trueHabits'¶
-
checkAndSetInitHabit(variables)¶
-
checkAndSetInitValue(variables)¶
-
cleanMemory()¶
-
cleanObservables()¶
-
computeComponentsApost(variables, j, XhtQXh)¶
-
computeVarXhtQ(Q)¶
-
computeVarYTildeHab(varXh)¶
-
computeVarYTildeHabOld(varXh)¶
-
finalizeSampling()¶
-
getOutputs()¶
-
habitCondSampler(j, rb, varHRF)¶
-
habitCondSamplerParallel(rb, h)¶
-
habitCondSamplerSerial(rb, h)¶
-
initObservables()¶
-
linkToData(dataInput)¶
-
parametersComments= {'contrasts': 'Define contrasts as arithmetic expressions.\nCondition names used in expressions must be consistent with those specified in session data above', 'paramLexp': 'lambda-like parameter of the Laplacian distribution in habit sampling\n recommended between 1. and 10.'}¶
-
sampleNextAlt(variables)¶
-
sampleNextInternal(variables)¶
-
sampleNrlsParallel(rb, h, varLambda, varCI, varCA, meanCA, varXhtQXh, variables)¶
-
sampleNrlsSerial(varXh, rb, h, varCI, varCA, meanCA, variables)¶
-
sampleNrlsSerial_bak(rb, h, varLambda, varCI, varCA, meanCA, varXhtQXh, variables)¶
-
samplingWarmUp(variables)¶
-
saveCurrentValue()¶
-
setupGamma()¶
-
setupTimeNrls()¶
-
spExtract(spInd, mtrx, cond)¶
-
updateGammaTimeNRLs(nc, nv)¶
-
updateObsersables()¶
-
updateXh(varHRF)¶
-
updateYtilde()¶
-
-
pyhrf.jde.nrl.habituation.sparsedot(X, A, mask, taille)¶
-
pyhrf.jde.nrl.habituation.sparsedotdimun(X, A, mask, lenght)¶
-
pyhrf.jde.nrl.habituation.subcptGamma(nrl, habit, nbTrials, deltaOns)¶