pyhrf.jde.nrl.habituation module¶
-
pyhrf.jde.nrl.habituation.
LaplacianPdf
(beta, r0Hab, a, b, N=1)¶
-
class
pyhrf.jde.nrl.habituation.
NRLwithHabSampler
¶ Bases:
pyhrf.jde.nrl.bigaussian.NRLSampler
Class handling the Gibbs sampling of Neural Response Levels in combination with habituation speed factor sampling. The underlying model is exponential decaying #TODO : comment attributes
-
P_HABITS_INI
= 'habitIni'¶
-
P_HAB_ALGO_PARAM
= 'paramLexp'¶
-
P_OUTPUT_RATIO
= 'outputRatio'¶
-
P_SAMPLE_HABITS
= 'sampleHabit'¶
-
P_TRUE_HABITS
= 'trueHabits'¶
-
checkAndSetInitHabit
(variables)¶
-
checkAndSetInitValue
(variables)¶
-
cleanMemory
()¶
-
cleanObservables
()¶
-
computeComponentsApost
(variables, j, XhtQXh)¶
-
computeVarXhtQ
(Q)¶
-
computeVarYTildeHab
(varXh)¶
-
computeVarYTildeHabOld
(varXh)¶
-
finalizeSampling
()¶
-
getOutputs
()¶
-
habitCondSampler
(j, rb, varHRF)¶
-
habitCondSamplerParallel
(rb, h)¶
-
habitCondSamplerSerial
(rb, h)¶
-
initObservables
()¶
-
linkToData
(dataInput)¶
-
parametersComments
= {'contrasts': 'Define contrasts as arithmetic expressions.\nCondition names used in expressions must be consistent with those specified in session data above', 'paramLexp': 'lambda-like parameter of the Laplacian distribution in habit sampling\n recommended between 1. and 10.'}¶
-
sampleNextAlt
(variables)¶
-
sampleNextInternal
(variables)¶
-
sampleNrlsParallel
(rb, h, varLambda, varCI, varCA, meanCA, varXhtQXh, variables)¶
-
sampleNrlsSerial
(varXh, rb, h, varCI, varCA, meanCA, variables)¶
-
sampleNrlsSerial_bak
(rb, h, varLambda, varCI, varCA, meanCA, varXhtQXh, variables)¶
-
samplingWarmUp
(variables)¶
-
saveCurrentValue
()¶
-
setupGamma
()¶
-
setupTimeNrls
()¶
-
spExtract
(spInd, mtrx, cond)¶
-
updateGammaTimeNRLs
(nc, nv)¶
-
updateObsersables
()¶
-
updateXh
(varHRF)¶
-
updateYtilde
()¶
-
-
pyhrf.jde.nrl.habituation.
sparsedot
(X, A, mask, taille)¶
-
pyhrf.jde.nrl.habituation.
sparsedotdimun
(X, A, mask, lenght)¶
-
pyhrf.jde.nrl.habituation.
subcptGamma
(nrl, habit, nbTrials, deltaOns)¶